Quantcast
Channel: ADI Trinamic Blog
Viewing all articles
Browse latest Browse all 66

Real-time Motor and Motion Control with a Raspberry Pi without a real-time OS

$
0
0

Single-board computer (SBC) gained more and more popularity during the last years due its opensource software and the simple hardware. With these SBC it is possible to develop quickly and easily prototype systems or even full products. The standard Linux distributions have no real-time capabilities. For many projects like a digital weather station, this is not crucial. For motion control, on the other hand, it is mandatory to have real-time access for making clean acceleration ramps, position control and closed-loop operation. All of this is possible with motion control ICs from TRINAMIC without needing any real-time operating system on the SBC.

The project below shows how to do precise autonomous cyclic movements with the TMC4361A without any MCU power. The Raspberry Pi 3 is used to set up the needed registers and from there the TMC4361A takes care of the movement. The used system consists besides the Raspberry Pi 3 of a TMC4361A-BOB and a TMC5160-BOB, which is used a plain pre-driver stage, so the internal motion controller is deactivated. The usage of the TRINAMIC’s API – TMC-API – is minimizing the software effort.

The motor will do alternating exactly 5 rotations at 2.5 RPS and 5 rotations at 5 RPS. The switching points are handled by the TMC4361A in hardware. So there is no need for real-time software capabilities. The following steps need to be done to setup the TMC4361A:

  1. Basic configuration of TMC4361A for controlling the TMC5160 family in step/dir mode
  2. Basic configuration of TMC5160 for step/dir mode via cover datagrams
  3. Activation of circular motion, see chapter 8.5.2. of TMC4361A Datasheet
  4. Setting up a one stage shadow register set, see chapter 9.2.1 of TMC4361A Datasheet
  5. Configuring a cyclic pipeline structure, see chapter 9.3.4. and 9.3.5. of TMC4361A Datasheet

Software Preparation

In this tutorial we are using a fresh Raspbian Stretch System (Version November 2017 – Release date 2017-11-29) with the latest updates:

sudo apt update
 
sudo apt upgrade

Download and install the bcm2835 library. Note XXX is a placeholder for the latest version. For this guide, version “1.52” was used. In this case, XXX is replaced by “1.52”. You can check the latest version by scrolling to the bottom of the following page: http://www.airspayce.com/mikem/bcm2835/

wget http://www.airspayce.com/mikem/bcm2835/bcm2835-XXX.tar.gz

tar zxvf bcm2835-XXX.tar

cd bcm2835-XXX

./configure

make

sudo make check

sudo make install

Create a project folder and download the latest TMC-API. Note X.XX is a placeholder for the latest version. For this guide, version “3.02” was used. In this case, X.XX is replaced by “3.02”. You can check the latest version by scrolling to the bottom of the following page: https://www.trinamic.com/support/software/access-package/

mkdir ~/TMC_EXAMPLE

cd ~/TMC_EXAMPLE

wget https://www.trinamic.com/fileadmin/assets/Products/Eval_Software/TMC-API_Release_vX.XX.zip

unzip TMC-API_Release_vX.XX.zip

mv TMC-API_Release_vX.XX TMC-API

Enable step/dir Mode on TMC5160-BOB

The TMC5160-BOB allows the TMC5160 to use in 2 different modes: With integrated motion controller and in step/dir mode. For controlling the TMC5160 by the TMC4361A the TMC5160 has to be in step/dir. On the TMC5160-BOB this can easily be done by desoldering the R2 and soldering it to R1.

TMC5160-BOB: R1 and R2 are red marked 

Wiring

The wiring is very simple. You will need 18 jumper wires. As a reference, you can use the TMC4361A-BOB_datasheet_Rev1.0.pdf and TMC5160-BOB_datasheet_Rev1.0.pdf.

Raspberry Pi 3 GPIO Header – Source: https://www.element14.com/community/docs/DOC-73950/l/raspberry-pi-3-model-b-gpio-40-pin-block-pinout

Rasbperry Pi to TMC4361A-BOB

Signal Raspberry Pi 3 TMC4361-BOB
VCC_IO 3.3v (1) VCC_IO (1)
GND GND (39) GND (2)
TMC4361A CLK GPIO04 (7) CLK (3)
TMC4361A NRST GPIO15 (10) NRST (4)
SPI Chip select (CS) SPI0 SCLK (23) CSN (5)
SPI CLK SPI0 SCLK (23) SCK (6)
MOSI SPI0 MOSI (19) SDI (7)
MISO SPI0 MISO (21) SDO (8)
TMC4361A-BOB

Rasbperry Pi to TMC5160-BOB

Signal Raspberry Pi 3 TMC5160-BOB
VCC_IO GPIO02 (3) VCC_IO (1)
TMC5160 CLK GPIO14 (8) CLK (8)
TMC5160 DRV_ENN GPIO03 (5) DRV_ENN(9)

TMC4361A-BOB to TMC5160-BOB

Signal TMC4361A TMC5160-BOB
GND GND (2) GND (2)
SPI Chip select (CS) CSN_DRV (18) CSN (3)
SPI CLK SCK_DRV (19) SCK (4)
MOSI SDI_DRV (21) SDI (5)
MISO SDO_DRV (20) SDO (6)
STEP STPOUT (22) REFL (10)
DIR STPDIR (23) REFR (11)
TMC5160-BOB

Raspberry Pi Code

An example code to initialize the TMC5160 is shown below. These files need to be placed in the same project folder as the TMC-API, in this case into ~/TMC_EXAMPLE. First, +3.3V is supplied to VCC_IO, the driver stages are enabled by pulling down DRV_ENN and the internal clock is used by pulling down CLK16. Afterwards, the TMC5160 is initialized and a simple move to position cycle is executed. The sequence will rotate a 200 full stepper motor 10 revolutions clockwise and 10 revolutions counterclockwise – depending on the wiring of the stepper motor. Please refer to the TMC5160 datasheet or the TMCL-IDE as a reference for the different registers.

You can also download the source files directly with your Pi:

cd ~/TMC_EXAMPLE

wget http://blog.trinamic.com/wp-content/uploads/2018/02/TMC4361A_and_TMC5160_TMCAPI_EXAMPLE.tar.gz

tar zxvf TMC5160_TMCAPI_EXAMPLE.tar.gz

 

#include <stdio.h>
#include <wiringPi.h>
#include <bcm2835.h>
#include <signal.h>
#include "SPI_TMC.h"

// Include the IC(s) you want to use
#include "TMC-API/tmc/ic/TMC5160/TMC5160.h"
#include "TMC-API/tmc/ic/TMC4361A/TMC4361A.h"

#define MOTOR0			0 // Motor 0

void resetMotorDrivers(uint8 motor);
void signal_callback_handler(int signum);

int main(int argc, char **argv) 
{
	// Register signal and signal handler
	signal(SIGINT, signal_callback_handler);
	
	if (!bcm2835_init())
      return 1;

	wiringPiSetupGpio();
  	
	// Initiate SPI 
	bcm2835_spi_begin();
	bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST); // MSB first
  	bcm2835_spi_setDataMode(BCM2835_SPI_MODE3); // SPI Mode 3
  	bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_256); // 1 MHz clock
  	bcm2835_spi_chipSelect(BCM2835_SPI_CS0); // define CS pin
	bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, LOW); // set CS polarity to low

	/***** IO control of TMC4361A-BOB & TMC5160-BOB *****/
	pinMode(2, OUTPUT);
	digitalWrite(2, HIGH); // TMC5160: Apply VCC_IO voltage 
	pinMode(3, OUTPUT);
	digitalWrite(3, LOW); // TMC5160: Use internal clock 
	pinMode(14, OUTPUT);
	digitalWrite(14, LOW); // TMC5160: Enable driver stage

	pinMode (4, GPIO_CLOCK);
	gpioClockSet (4, 9600000); // TMC4361A: Set clock to 9.6MHz
	pinMode(15, OUTPUT);
	digitalWrite(15, HIGH); // TMC4361A: Low active reset

	// Reset the TMC4361A & TMC5160
	resetMotorDrivers(MOTOR0);

	/***** Configuring TMC4361A & TMC5160 *****/
	// CLK_FREQ=9.6MHz
	tmc4361A_writeInt(TMC4361A_CLK_FREQ, 0x00927C00);

	// SR_ENC_IN=2, FILT_L_ENC_IN=2, SR_REF=0, FILT_L_REF=0, SR_S=4, FILT_L_S=5, SR_ENC_OUT=0, FILT_L_ENC_OUT=0
	tmc4361A_writeInt(TMC4361A_INPUT_FILT_CONF, 0x00540022);

	// SPI_OUTPUT_FORMAT=12, DISABLE_POLLING=1, COVER_DATA_LENGTH=0, SPI_OUT_LOW_TIME=4, SPI_OUT_HIGH_TIME=4, SPI_OUT_BLOCK_TIME=8
	tmc4361A_writeInt(TMC4361A_SPIOUT_CONF, 0x8440004C);

	// DIRECT_ACC_VAL_EN=1, DIRECT_BOW_VAL_EN=1, STDBY_CLK_PIN_ASSIGNMENT=3
	tmc4361A_writeInt(TMC4361A_GENERAL_CONF, 0x00006006);

	// STP_LENGTH=4, DIR_SETUP_TIME=6
	tmc4361A_writeInt(TMC4361A_STP_LENGTH_ADD, 0x00060004);

	/***** TMC5160 Settings *****/
	// EN_PWM_MODE=1 enables stealthChop™, MULTISTEP_FILT=1, DIRECT_MODE=0 (off)
	tmc4361A_writeInt(TMC4361A_COVER_HIGH_WR, TMC5160_GCONF | 0x80);
	tmc4361A_writeInt(TMC4361A_COVER_LOW_WR, 0x0000000C);
	delay(1); // COVER_DONE flag: ~90µs -> 1 ms more than enough

	// TOFF=3, HSTRT=4, HEND=1, TBL=2, CHM=0 (spreadCycle™)
	tmc4361A_writeInt(TMC4361A_COVER_HIGH_WR, TMC5160_CHOPCONF | 0x80);
	tmc4361A_writeInt(TMC4361A_COVER_LOW_WR, 0x000100C3);
	delay(1); // COVER_DONE flag: ~90µs -> 1 ms more than enough

	// IHOLD=8, IRUN=15 (max. current), IHOLDDELAY=6
	tmc4361A_writeInt(TMC4361A_COVER_HIGH_WR, TMC5160_IHOLD_IRUN | 0x80);
	tmc4361A_writeInt(TMC4361A_COVER_LOW_WR, 0x00080F0A);
	delay(1); // COVER_DONE flag: ~90µs -> 1 ms more than enough

	// TPOWERDOWN=10: Delay before power down in stand still
	tmc4361A_writeInt(TMC4361A_COVER_HIGH_WR, TMC5160_TPOWERDOWN | 0x80);
	tmc4361A_writeInt(TMC4361A_COVER_LOW_WR, 0x0000000A);
	delay(1); // COVER_DONE flag: ~90µs -> 1 ms more than enough

	// TPWMTHRS=5000
	tmc4361A_writeInt(TMC4361A_COVER_HIGH_WR, TMC5160_TPWMTHRS| 0x80);
	tmc4361A_writeInt(TMC4361A_COVER_LOW_WR, 0x00001388); 
	delay(1); // COVER_DONE flag: ~90µs -> 1 ms more than enough
	/***** END of TMC5160 Settings *****/

	//MOTION_PROFILE = 2 (s-shaped ramp), OPERATION_MODE = 0 (velocity mode)
	tmc4361A_writeInt(TMC4361A_RAMPMODE, TMC4361A_RAMP_SSHAPE);
	
	// Values for speed and acceleration of 1st profile	
	tmc4361A_writeInt(TMC4361A_AMAX, 0x00001000); // AMAX = 4096 pps²
	tmc4361A_writeInt(TMC4361A_DMAX, 0x00001000); // DMAX = 4096 pps²
	tmc4361A_writeInt(TMC4361A_BOW1, 0x00000200); // BOW1 = 512 pps³
	tmc4361A_writeInt(TMC4361A_BOW2, 0x00000200); // BOW2 = 512 pps³
	tmc4361A_writeInt(TMC4361A_BOW3, 0x00000200); // BOW3 = 512 pps³
	tmc4361A_writeInt(TMC4361A_BOW4, 0x00000200); // BOW4 = 512 pps³
	tmc4361A_writeInt(TMC4361A_VMAX, 0x01F40000); // VMAX = 128k pps = 2.5 RPS (1.8° motor)

	// Values for speed and acceleration of 2nd profile
	tmc4361A_writeInt(TMC4361A_SH_REG1, 0x00001000); // AMAX = 4096 pps²
	tmc4361A_writeInt(TMC4361A_SH_REG2, 0x00001000); // DMAX = 4096 pps²
	tmc4361A_writeInt(TMC4361A_SH_REG8, 0x00000200); // BOW1 = 512 pps³
	tmc4361A_writeInt(TMC4361A_SH_REG9, 0x00000200); // BOW2 = 512 pps³
	tmc4361A_writeInt(TMC4361A_SH_REG10, 0x00000200); // BOW3 = 512 pps³
	tmc4361A_writeInt(TMC4361A_SH_REG11, 0x00000200); // BOW4 = 512 pps³
	tmc4361A_writeInt(TMC4361A_SH_REG0, 0x03E80000); // VMAX = 256k pps = 5 RPS (1.8° motor)

	/***** Setting up the TMC4361A for circular motion *****/
	// START_EN = 8, TRIGGER_EVENTS = 8, PIPELINE_EN = 2, CYCLIC_SHADOW_REGS = 1, XPIPE_REWRITE_REG = 1
	tmc4361A_writeInt(TMC4361A_START_CONF, 0x01042110);

	// XRANGE = 256k (10 rotations)
	tmc4361A_writeInt(TMC4361A_X_RANGE_WR, 0x0003E800);

	// CIRCULAR_MOVEMENT_EN = 1
	tmc4361A_writeInt(TMC4361A_REFERENCE_CONF, 0x00400000);

	// POS_COMP = -256k (5 rotations)	
	tmc4361A_writeInt(TMC4361A_POS_COMP, 0xFFFC1800);

	// 1st pipeline stage of POS_COMP = 0
	tmc4361A_writeInt(TMC4361A_X_PIPE0, 0x00000000);

	printf("Press \"CTRL + C\" to stop the motor(s) and to close the program\n");
	delay(1);
	
	while(1){}

	// End SPI communication
  	bcm2835_spi_end();
   	bcm2835_close();

	return 0;
}

void resetMotorDrivers(uint8 motor)
{
	if(!tmc4361A_readInt(TMC4361A_VACTUAL)) 
	{
		digitalWrite(2, LOW); // TMC5160: Reset
		delay(10);
		digitalWrite(2, HIGH); 
		delay(10);
		digitalWrite(15, LOW); // TMC4361A Reset
		delay(10);
		digitalWrite(15, HIGH);
		delay(10);
		tmc4361A_writeInt(TMC4361A_RESET_REG, 0x52535400);
	}
}

void signal_callback_handler(int signum)
{
	tmc4361A_writeInt(TMC4361A_VMAX, 0x00000000); // VMAX = 0 pps
	digitalWrite(14, HIGH); // TMC5160: Disable driver stage
	
	// Exit program
	exit(signum);
}

 

/*
 * SPI_TMC.h
 *
 *  Created on: 12.01.2018
 *      Author: MN
 */
#ifndef SPI_TMC_H
#define SPI_TMC_H

#include "TMC-API/tmc/helpers/API_Header.h"

void initSPI(void);

// TMC5160 SPI wrapper
void tmc5160_writeDatagram(uint8 motor, uint8 address, uint8 x1, uint8 x2, uint8 x3, uint8 x4);
void tmc5160_writeInt(uint8 motor, uint8 address, int value);
int tmc5160_readInt(u8 motor, uint8 address);

// TMC4361A SPI wrapper
void tmc4361A_writeDatagram(uint8 address, uint8 x1, uint8 x2, uint8 x3, uint8 x4);
void tmc4361A_writeInt(uint8 address, int value);
int tmc4361A_readInt(uint8 address);
unsigned char tmc4361A_cover(unsigned char data, unsigned char lastTransfer);

// General SPI functions
void tmc40bit_writeInt(u8 motor, uint8 address, int value);
int tmc40bit_readInt(u8 motor, uint8 address);

#endif /* SPI_TMC_H */

 

#include <bcm2835.h>
#include "SPI_TMC.h"
#include "TMC-API/tmc/ic/TMC4361A/TMC4361A_Register.h"

// TMC5160 SPI wrapper
void tmc5160_writeDatagram(uint8 motor, uint8 address, uint8 x1, uint8 x2, uint8 x3, uint8 x4)
{
    int value = x1;
	value <<= 8;
	value |= x2;
	value <<= 8;
	value |= x3;
	value <<= 8;
	value |= x4;

    tmc40bit_writeInt(motor, address, value);
}

void tmc5160_writeInt(uint8 motor, uint8 address, int value)
{
    tmc40bit_writeInt(motor, address, value);
}

int tmc5160_readInt(u8 motor, uint8 address)
{
    tmc40bit_readInt(motor, address);
    return tmc40bit_readInt(motor, address);
}

// TMC4361 SPI wrapper
void tmc4361A_writeDatagram(uint8 address, uint8 x1, uint8 x2, uint8 x3, uint8 x4)
{
    int value = x1;
	value <<= 8;
	value |= x2;
	value <<= 8;
	value |= x3;
	value <<= 8;
	value |= x4;

    tmc40bit_writeInt(0, address, value);
}

void tmc4361A_writeInt(uint8 address, int value)
{
    tmc40bit_writeInt(0, address, value);
}

int tmc4361A_readInt(uint8 address)
{
    tmc40bit_readInt(0, address);
    return tmc40bit_readInt(0, address);
}

unsigned char tmc4361A_cover(unsigned char data, unsigned char lastTransfer)
{
	static uint64 coverIn = 0;     // read from squirrel
	static uint64 coverOut = 0;    // write to squirrel
	static uint8 coverLength = 0;  // data to be written

	uint8 out = 0; // return value of this function

	// buffer outgoing data
	coverOut <<= 8;    // shift left by one byte to make room for the next byte
	coverOut |= data;  // add new byte to be written
	coverLength++;     // count outgoing bytes

	// return read and buffered byte to be returned
	out = coverIn >> 56;  // output last received byte
	coverIn <<= 8;        // shift by one byte to read this next time

	if(lastTransfer)
	{
		/* Write data to cover register(s). The lower 4 bytes go into the cover low register,
		 * the higher 4 bytes, if present, go into the cover high register.
		 * The datagram needs to be sent twice, otherwise the read buffer will be delayed by
		 * one read/write datagram.
		 */

		// Send the buffered datagram & wait a bit before continuing so the 4361 can complete the datagram to the driver
		// measured delay between COVER_LOW transmission and COVER_DONE flag: ~90�s -> 1 ms more than enough
		// todo CHECK 3: Delay measurement only done on TMC4361, not 4361A - make sure the required delay didnt change (LH) #1
		if(coverLength > 4)
			tmc4361A_writeInt(TMC4361A_COVER_HIGH_WR, coverOut >> 32);
		tmc4361A_writeInt(TMC4361A_COVER_LOW_WR, coverOut & 0xFFFFFFFF);
		delay(1);

		// Trigger a re-send by writing the low register again
		tmc4361A_writeInt(TMC4361A_COVER_LOW_WR, coverOut & 0xFFFFFFFF);

		// Read the reply
		coverIn = 0;
		if(coverLength > 4)
			coverIn |= (uint64) tmc4361A_readInt(TMC4361A_COVER_DRV_HIGH_RD) << 32;
		coverIn |= tmc4361A_readInt(TMC4361A_COVER_DRV_LOW_RD);
		coverIn <<= (8-coverLength) * 8; // Shift the highest byte of the reply to the highest byte of the buffer uint64

		// Clear write buffer
		coverOut = 0;
		coverLength=0;
	}

	return out; // return buffered read byte
}


// General SPI decription
void tmc40bit_writeInt(u8 motor, uint8 address, int value)
{
    char tbuf[5];
    tbuf[0] = address | 0x80;
    tbuf[1] = 0xFF & (value>>24);
    tbuf[2] = 0xFF & (value>>16);
    tbuf[3] = 0xFF & (value>>8);
    tbuf[4] = 0xFF & value;

    bcm2835_spi_writenb (tbuf, 5);
}

int tmc40bit_readInt(u8 motor, uint8 address)
{
    char tbuf[5], rbuf[5];
    int value;
	// clear write bit
	tbuf[0] = address & 0x7F;
    
    bcm2835_spi_transfernb (tbuf, rbuf, 5);

	value =rbuf[1];
	value <<= 8;
	value |= rbuf[2];
	value <<= 8;
	value |= rbuf[3];
	value <<= 8;
	value |= rbuf[4];

	return value;
}

 

TARGET_EXEC ?= TMCAPI_EXAMPLE
BUILD_DIR ?= ./bin
CC = gcc
CXX = g++

# C Fags
CFLAGS			+= -Wall 
CFLAGS			+= -g
LDFLAGS			+= -lbcm2835 
LDFLAGS			+= -lwiringPi

# define the C source files
SRCS				+= main.c
SRCS				+= SPI_TMC.c
# used functions from TMC_API
SRCS				+= TMC-API/tmc/helpers/Debug.c
#SRCS 			+= TMC-API/tmc/ic/TMC2130/TMC2130.c
#SRCS 			+= TMC-API/tmc/ic/TMC2208/TMC2208.c
#SRCS 			+= TMC-API/tmc/ic/TMC2224/TMC2224.c
#SRCS 			+= TMC-API/tmc/ic/TMC2660/TMC2660.c
#SRCS 			+= TMC-API/tmc/ic/TMC5130/TMC5130.c
SRCS 			+= TMC-API/tmc/ic/TMC5160/TMC5160.c
#SRCS				+= TMC-API/tmc/ic/TMC4330/TMC4330.c
#SRCS				+= TMC-API/tmc/ic/TMC4331/TMC4331.c
#SRCS				+= TMC-API/tmc/ic/TMC4361/TMC4361.c
SRCS				+= TMC-API/tmc/ic/TMC4361A/TMC4361A.c
#SRCS				+= TMC-API/tmc/ic/TMC4670/TMC4670.c
#SRCS				+= TMC-API/tmc/ic/TMC4671/TMC4671.c
#SRCS				+= TMC-API/tmc/ic/TMC4672/TMC4672.c
#SRCS				+= TMC-API/tmc/ic/TMCC160/TMCC160.c
#SRCS				+= TMC-API/tmc/ic/TMC5041/TMC5041.c
#SRCS				+= TMC-API/tmc/ic/TMC5062/TMC5062.c
#SRCS				+= TMC-API/tmc/ic/TMC5072/TMC5072.c

OBJS := $(SRCS:%=$(BUILD_DIR)/%.o)
DEPS := $(OBJS:.o=.d)

$(BUILD_DIR)/$(TARGET_EXEC): $(OBJS)
	$(CC) $(OBJS) -o $@ $(LDFLAGS)

# assembly
$(BUILD_DIR)/%.s.o: %.s
	$(MKDIR_P) $(dir $@)
	$(AS) $(ASFLAGS) -c $< -o $@ $(LDFLAGS)

# c source
$(BUILD_DIR)/%.c.o: %.c
	$(MKDIR_P) $(dir $@)
	$(CC) $(CPPFLAGS) $(CFLAGS) -c $< -o $@ $(LDFLAGS)

# c++ source
$(BUILD_DIR)/%.cpp.o: %.cpp
	$(MKDIR_P) $(dir $@)
	$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c $< -o $@ $(LDFLAGS)


.PHONY: clean

clean:
	$(RM) -r $(BUILD_DIR)

-include $(DEPS)

MKDIR_P ?= mkdir -p

Compiling and running the code

Use the following command to compile the code.

cd ~/TMC_EXAMPLE

make

Now you are able to execute this example.

sudo ~/TMCAPI_test/bin/TMCAPI_EXAMPLE

Be aware that the motor runs as soon as you execute the program.

Related Pages

TMCL-IDE

TMC4361A

TMC4361A-BOB

TMC5160

TMC5160-BOB

TRINAMIC Technology Access Package -TMC-API

www.trinamic.com


Viewing all articles
Browse latest Browse all 66

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>